Atención al cliente: 910 020 252 4dmedica@4dmedica.com

El uso de las nuevas tecnología y la inteligencia artificial (IA) ha supuesto un antes y un después para muchos sectores. Uno de ellos ha sido la medicina, donde los últimos avances y aplicaciones se han visto influenciados por el desarrollo de la tecnología. La inteligencia artificial es una especialidad en el campo de la informática que se usa para producir programas a través de una serie de algoritmos que tienen la capacidad de pensar, aprender y tomar decisiones, como lo hacen los humanos.

¿Cómo funciona la IA?

La IA empezó a desarrollarse en la década de los 90 con el objetivo de crear un sistema informático que procesara los datos de forma similar al cerebro humano. Una de las ramas de la inteligencia artificial que más utilidad tiene en el sector sanitario es el aprendizaje automático. Este sistema tiene la capacidad de que las máquinas utilicen los algoritmos y aprendan de los datos, lo que mejora la toma de decisiones con la información procesada.

Mediante la automatización de funciones y tareas, los profesionales sanitarios pueden procesar y analizar los datos médicos de manera más rápida y precisa. Esto tiene un notable impacto en las diferentes áreas del sector sanitario y fomenta una mejora de la gestión sanitaria. Entre los principales usos que ofrece la IA en el ámbito de la salud, encontramos que ayuda a desarrollar y optimizar procesos en el diagnóstico clínico, en la detección y prevención de enfermedades, en la atención sanitaria, en la investigación y en la creación o actualización de nuevos medicamentos.

A su vez, también ha sido determinante en el progreso de la telemedicina y en el desarrollo de tratamientos médicos personalizados. En el siguiente artículo, abordamos las principales aplicaciones de la IA en la medicina y cómo están ayudando a crear un sistema sanitario más completo, ágil y efectivo.

Aplicaciones de la IA en la medicina

En los últimos años, la IA se ha incorporado a la medicina para fomentar una atención al paciente con mayor calidad, acelerar los procesos y lograr un aumento de la precisión diagnóstica. ¿Cuáles son las diferentes áreas en las que actualmente se utiliza la inteligencia artificial y qué mejoras han implicado?

Prevención de enfermedades y diagnóstico precoz

La IA es una herramienta clave en la prevención de enfermedades. Mediante el uso del Big Data, que consiste en la combinación de un conjunto de datos digitales sobre salud, datos genómicos y datos de comportamiento del paciente, se pueden identificar factores de riesgo y patrones que deriven en el desarrollo de ciertas enfermedades.

  • Propagación de enfermedades: Por un lado, los algoritmos de machine learning pueden predecir la propagación de enfermedades como la gripe o el COVID-19, anticipándose a picos epidémicos y permitiendo tomar medidas preventivas.
  • Detectar señales de enfermedades crónicas: Otra de sus aplicaciones es que se pueden identificar signos tempranos de enfermedades crónicas, como la diabetes o las enfermedades cardíacas. Las enfermedades crónicas se caracterizan por surgir de forma lenta y, en la mayoría de ocasiones, pasan desapercibidas hasta que derivan en complicaciones más graves. Por ello, el uso de la IA resulta de gran utilidad para detectar posibles signos de enfermedades en estudios médicos, como análisis de sangre, imágenes de ultrasonido o electrocardiogramas. En este caso, los algoritmos de la IA pueden detectar patrones de enfermedad cardiovascular a través de imágenes médicas como la resonancia magnética o las tomografías computarizadas.
  • Predisposición de enfermedades genéticas: A través del uso de datos genómicos, la inteligencia artificial también puede analizar la predisposición a que surjan enfermedades genéticas. Los algoritmos de la IA se encargan de estudiar los patrones en el ADN para identificar variantes genéticas que podrían indicar un alto riesgo en el desarrollo de ciertas enfermedades. En oncología, se utiliza para poder predecir el riesgo de cáncer de mama o colon, permitiendo a los médicos diseñar planes de prevención personalizados.

Diagnóstico clínico

En el procesamiento e interpretación de imágenes para el diagnóstico, la IA ofrece algoritmos que mejoran la calidad y la precisión del diagnóstico clínico. Permiten reconocer patrones complejos en los datos de las imágenes de forma automática, eliminar el ruido para aumentar su calidad y establecer modelos tridimensionales a partir de imágenes de pacientes concretos. En este campo, podemos destacar la investigación realizada por parte de los investigadores de IBM en torno a un nuevo modelo de IA que puede predecir el desarrollo del cáncer de mama maligno.

Con unas tasas comparables con las obtenidas por los radiólogos humanos, este algoritmo puede aprender y tomar decisiones sobre el desarrollo del cáncer a partir de datos de imágenes y del historial del paciente. En concreto, pudo predecir el 87% de los casos analizados y también pudo interpretar el 77% de los casos no cancerosos. Por tanto, este modelo podría ser una herramienta fundamental para ayudar a los radiólogos a confirmar o desestimar casos positivos de cáncer de mama.

Tratamientos médicos personalizados

Otro de los usos de la IA en medicina es la búsqueda de tratamientos médicos personalizados para cada paciente. En función de un conjunto de factores, como el historial médico, su estilo de vida y su genética, los algoritmos de IA pueden analizar un gran volumen de datos genómicos y biomarcadores para identificar patrones y factores de riesgo.

Con ello, se puede desarrollar un tratamiento médico específico para las necesidades de paciente, incrementando la eficiencia y minimizando la aparición de efectos secundarios. Por ejemplo, en oncología, la IA ayuda a identificar el mejor tratamiento para cada tipo de cáncer, considerando la genética específica del tumor.

Atención sanitaria

La atención al paciente es una de las áreas donde la IA puede proporcionar un gran apoyo, tanto a los profesionales médicos como a los pacientes. En este caso, los asistentes virtuales basados en la IA son una solución idónea para automatizar funciones y tareas. Entre ellas, destacan la gestión de citas, la realización de consultas básicas sobre salud, la evaluación de síntomas y la administración de medicamentos.

Impulso de la telemedicina

Estos sistemas, además, han permitido la evolución de la telemedicina. En este sentido, los profesionales pueden monitorizar a los pacientes que padecen enfermedades crónicas de forma remota y recibir alertas de las posibles anomalías que pueden surgir en su estado de salud. Esto ofrece amplios beneficios a la hora de llegar a un mayor número de pacientes, especialmente a aquellos que viven en regiones que no cuentan con todos los servicios de salud en sus localidades y deben desplazarse para recibir atención médica.

Gestión de recursos en centros médicos y hospitales

Otro aspecto en el que se puede implementar la IA es en la gestión de recursos materiales y humanos en clínicas, hospitales y centros de salud. Examinar grandes cantidades de datos procedentes de registros históricos puede ser esencial para prever los recursos necesarios en una situación concreta, impulsando una mejor gestión y optimización de los recursos disponibles. Esto puede ser de gran ayuda para evitar la saturación de los centros médicos en momentos de alta demanda y poder gestionar el inventario de suministros médicos y la disponibilidad de camas y medicamentos.

Investigación y desarrollo de medicamentos

La inteligencia artificial ha sido fundamental en el desarrollo de la investigación médica, tanto en la creación de nuevos medicamentos como en la optimización de los ensayos clínicos. La integración de la inteligencia artificial en el diseño de fármacos implica un enfoque multidisciplinar que combina tanto conceptos de química y biología como ciencias de la computación para acelerar el descubrimiento de nuevos tratamientos y soluciones médicas.

Para ello, se utilizan los modelos de IA creados con algoritmos de aprendizaje automático y aprendizaje profundo con el objetivo de analizar grandes cantidades de datos sobre compuestos químicos y biológicos y la interacción entre ellos.

Cirugía robótica

Los sistemas de cirugía robótica como Da Vinci utilizan la IA para realizar procedimientos quirúrgicos complejos con mayor control y precisión. Estos robots son controlados por los cirujanos para elaborar pequeñas incisiones, lo que ayuda a reducir el margen de error, realizar cirugías mínimamente invasivas y mejorar los tiempos de recuperación de los pacientes.

Otro aspecto clave en el que se puede aplicar la inteligencia artificial es en la creación de planes quirúrgicos personalizados. En este caso, se utilizan datos de cirugías anteriores para optimizar las técnicas y poder predecir las posibles complicaciones que pueden surgir durante las operaciones.

Formación

La IA tiene un papel clave en la formación de los profesionales de la salud. Proporciona múltiples herramientas que ayuda a que los especialistas médicos puedan adquirir y perfeccionar sus habilidades en diferentes áreas, logrando aumentar sus conocimientos de forma más eficiente y personalizada.

Por un lado, las simulaciones médicas a través de la IA permiten que los estudiantes puedan poner en práctica procedimientos complejos y reducir el riesgo de errores. A su vez, destacan las plataformas de aprendizaje que utilizan la IA para ajustar los contenidos educativos en función del nivel de conocimiento que tenga el estudiante, con el propósito de obtener una mayor eficacia en el proceso de aprendizaje.

En resumen, la IA tiene una gran cantidad de aplicaciones en medicina y cada vez existen nuevas mejoras e innovaciones que ayudan a seguir avanzando en el sector sanitario.

Bibliografía

APD. (s.f.). Aplicaciones de la inteligencia artificial en la medicina. Asociación para el Progreso de la Dirección. Recuperado de https://www.apd.es/aplicaciones-inteligencia-artificial-en-medicina/#:~:text=La%20IA%20puede%20acelerar%20el,efectividad%20y%20reduciendo%20efectos%20secundarios.

Sanofi. (s.f.). Inteligencia artificial en la salud. Campus Sanofi. Recuperado de https://pro.campus.sanofi/es/actualidad/articulos/inteligencia-artificial-salud

Pakdemirli, E. (2020). Artificial intelligence in radiology: Friend or foe? Radiology, 297(3), 509-510. https://doi.org/10.1148/radiol.2019182622

Sánchez Rosado, E. J., & Díez Parra, A. (2022). Inteligencia artificial en medicina: aplicaciones y desafíos. Economía Industrial, 423, 49-63. Ministerio de Industria, Comercio y Turismo. Recuperado de https://www.mintur.gob.es/Publicaciones/Publicacionesperiodicas/EconomiaIndustrial/RevistaEconomiaIndustrial/423/SA%CC%81NCHEZ%20ROSADO%20Y%20DI%CC%81EZ%20PARRA.pdf

Universidad Internacional de Andalucía. (2021). Inteligencia artificial en la medicina: el futuro de la salud. UNIA Blog. Recuperado de https://www.unia.es/vida-universitaria/blog/inteligencia-artificial-en-la-medicina-el-futuro-de-la-salud

United States National Library of Medicine. (2020). Artificial intelligence in healthcare and the implications for patient safety. JAMA Network Open, 3(4), e200033. Recuperado de https://pmc.ncbi.nlm.nih.gov/articles/PMC7752970/pdf/main.pdf

Asociación Mexicana de la Industria de Tecnologías de Información. (s.f.). Inteligencia artificial en salud: Transformación digital para el cuidado de la salud en México. Recuperado de https://amexcomp.mx/media/publicaciones/Libro_IA_Salud_Final_r.pdf

Merly Dayana Jurado-Sánchez, Eddy Maritza Pedroza-Charris, Blanca Mery Rolón-Rodríguez. (2021) ¿Cómo ha ayudado la inteligencia artificial en la medicina?. Convicciones, 8 (16), 6-20. https://www.fesc.edu.co/Revistas/OJS/index.php/convicciones/article/view/841

Kiko Ramos

CEO de 4D Médica. Experto en comercialización y distribución de equipamiento médico.

es_ESES