Service clientèle : 910 020 252 4dmedica@4dmedica.com

Échographie est une technique médicale non invasive qui utilise les ultrasons pour obtenir des images en temps réel de l'intérieur du corps. Les matériel médical utilisé pour réaliser une échographie est l'appareil à ultrasonsqui incorpore un dispositif appelé transducteur. Les transducteurs ultrasonores sont le principal composant de cet équipement médical dans le domaine des ultrasons. imagerie diagnostique. Leur fonction est d'émettre des ondes sonores de haute fréquence qui permettent d'observer le fonctionnement et les mouvements des tissus et organes internes du corps. Ils sont ensuite chargés de générer les images médicales qui s'affichent sur l'écran ou le moniteur de l'équipement médical, appelées sonogrammes.

La qualité et l'utilité d'une échographie dépendent en grande partie du transducteur utilisé. C'est pourquoi, dans l'article suivant, nous abordons le fonctionnement de cet appareil et fournissons un guide détaillé des différents types de transducteurs à ultrasons existants. Si vous souhaitez connaître leurs principaux avantages, leurs fonctions et leurs différences, nous les analysons ci-dessous !

Transducteurs à ultrasons : Concept et fonctionnement

Le transducteur, également appelé sonde d'échographieest le composant ultrasonique qui convertit l'énergie électrique en ondes sonores, connues sous le nom d'ultrasons. Son fonctionnement est basé sur l'effet piézoélectrique, un phénomène dans lequel certains cristaux présents dans le transducteur génèrent des vibrations lorsqu'ils reçoivent un courant électrique, produisant ainsi des ondes sonores. De cette manière, le transducteur ou la sonde agit en tant qu'émetteur et récepteur de
l'échographie.

Lorsque ces ondes pénètrent dans le corps et atteignent différentes structures et tissus, elles reviennent au transducteur sous forme d'échos. Les échographes traitent ces informations et convertissent les ultrasons capturés en images médicales qui peuvent être affichées sur l'écran de l'appareil. Ces images sont appelées sonogrammes et permettent de visualiser le fonctionnement de différents tissus et organes en temps réel.

Utilisation de transducteurs dans l'échographie

Dans la réalisation d'un échographieLe transducteur joue un rôle clé. L'utilisation de ce dispositif fonctionne de la manière suivante :

  1. Choisir le bon transducteurIl existe différents types de transducteurs ou de sondes d'échographie. En fonction de la zone anatomique à évaluer, le médecin ou le technicien doit choisir un transducteur spécifique.
  2. Application du gel à ultrasonsLors d'une échographie, le transducteur est enduit d'un gel conducteur qui glisse sur la peau du patient dans la zone spécifique à analyser. Ce gel élimine l'air entre la peau et le transducteur, ce qui facilite la transmission des ondes ultrasonores et améliore la qualité des images.
  3. Exploration de la zone d'intérêtLe transducteur peut être glissé sur la peau ou inséré dans une cavité dans le cas de l'échographie transvaginale ou transrectale. En se déplaçant, l'appareil à ultrasons affiche sur l'écran des images en temps réel de la zone examinée.
  4. ParamétrageL'opérateur peut modifier certains paramètres pour améliorer la qualité de l'image en fonction de la profondeur et du type de tissu à analyser. Il s'agit notamment de la fréquence, de la focalisation et du gain.
  5. Capture et interprétation d'imagesLes images générées sont ensuite enregistrées à des fins d'analyse et de diagnostic, créant ainsi une échographie qui permet d'évaluer l'état des organes et des tissus.

Types de transducteurs à ultrasons

Tous les transducteurs n'ont pas la même fonction. En fonction de la zone anatomique à analyser, différentes résolutions et profondeurs de pénétration sont nécessaires. Par conséquent, la sélection des bons transducteurs est un aspect essentiel pour améliorer la précision du diagnostic. transducteurs pour échographes adéquat. À cette fin, il est important de connaître les différentes options et modèles. Vous trouverez ci-dessous un guide complet expliquant les principaux types de transducteurs utilisés en échographie ainsi que leurs caractéristiques, avantages et applications cliniques.

Transducteurs linéaires

Les transducteurs linéaires se caractérisent par leur forme rectangulaire et l'émission d'ondes ultrasonores en lignes parallèles. Ils offrent une résolution élevée, mais leur pénétration est plus faible. Ils sont principalement utilisés pour des études superficielles en physiothérapie, podologie et dermatologie.

Avantages

  • Haute résolution d'imageCela permet d'observer les détails anatomiques les plus fins.
  • Idéal pour les structures de surfacecar il fonctionne à des fréquences comprises entre 5 et 15 MHz.
  • Excellent pour études vasculaires et musculo-squelettiques.

Applications cliniques

  • Échographie vasculaireEvaluation de l'état des artères et des veines.
  • Échographie des tissus mousExamens de la thyroïde, des seins, des muscles et des articulations.
  • Échographie dermatologiqueÉvaluation de la peau et des structures de surface.

Transducteurs convexes ou curvilignes

Ces transducteurs ont une forme incurvée qui permet d'élargir le champ de vision à des profondeurs intermédiaires et supérieures. Ils génèrent des images en forme de secteur ou d'éventail. Ils ont une pénétration plus élevée que le transducteur linéaire. Ils sont utilisés pour les études abdominales et gynécologiques.

Avantages

  • Augmentation de la pénétration que le transducteur linéaire, comprend des fréquences comprises entre 2 et 6 MHz.
  • Convient pour études abdominales et pelviennes.
  • Il a une large couverture d'imageIl est donc très utile pour les scans de grands organes.

Applications cliniques

  • Échographie abdominaleÉvaluation du foie, des reins, de la vésicule biliaire et du pancréas.
  • Échographie obstétriqueSurveillance de la grossesse et évaluation du fœtus.
  • Échographie pelvienneExamen et évaluation des organes reproducteurs.
  • Études de pédiatrie et de médecine générale.

Transducteurs sectoriels ou à réseau phasé

Les transducteurs sectoriels, également appelés réseau phaséémettent des ondes à partir d'un petit point. Ils émettent des ondes dans un schéma de balayage à ouverture étroite et génèrent des images en forme de triangle ou d'éventail. Ils ont une pénétration élevée, mais une résolution plus faible que les transducteurs linéaires.

Avantages

  • Permet de scanner des structures profondes sans qu'un contact prolongé avec la peau ne soit nécessaire.
  • Il a une basse fréquence entre 2 et 4 MHz, ce qui assure une excellente pénétration.
  • Il convient pour les études dans des espaces confinés tels que le thorax.

Applications cliniques

  • EchocardiographieÉvaluation du cœur et des gros vaisseaux sanguins.
  • Échographie pulmonaireExamen du parenchyme pulmonaire, diagnostic des pathologies thoraciques et études en soins intensifs.
  • Échographie d'urgenceUtilisé dans les études FAST (Focused Assessment with Sonography for Trauma) dans le domaine des traumatismes.

Transducteurs endocavitaires (endovaginaux et endorectaux)

Ces transducteurs sont conçus pour être insérés dans les cavités du corps et fournissent des images détaillées et à haute résolution des organes internes à une distance rapprochée. Ce type de sonde échographique est utilisé dans les spécialités de gynécologie, d'obstétrique et d'urologie.

Avantages

  • Il a une haute résolution d'image en raison de sa proximité avec l'organe à examiner.
  • La fréquence proposée est moyenne-hauteLa nouvelle technologie offre un équilibre entre la résolution et la pénétration, entre 5 et 9 MHz.
  • Facilite la détection des les pathologies gynécologiques et prostatiques.

Applications cliniques

  • Échographie transvaginaleÉvaluation de l'utérus, des ovaires et du début de la grossesse.
  • Échographie transrectaleDiagnostic des pathologies de la prostate et du rectum.

Transducteurs microconvexes

Ce type de transducteur est similaire aux transducteurs convexes, mais sa surface est plus petite. Il se caractérise donc par une plus grande maniabilité dans les zones difficiles d'accès. Parmi leurs différentes applications, les transducteurs microconvexes sont utilisés pour les examens des patients pédiatriques, des nouveau-nés et dans le domaine vétérinaire.

Avantages

  • Manœuvrabilité accrue dans les petites zones anatomiques.
  • Fréquence intermédiaire entre 5 et 8 MHz, ce qui permet de trouver un équilibre entre profondeur et résolution.
  • C'est le bon choix pour chez les patients difficiles à scanner avec des transducteurs conventionnels.

Applications cliniques

  • Échographie pédiatrique et néonataleÉvaluation du cerveau et de l'abdomen chez les nouveau-nés.
  • Échographie vétérinairePour l'examen des animaux.
  • Études d'anesthésiologie et de soins intensifsUtilisé comme guide pour les procédures, telles que la pose de cathéters et les ponctions.

Transductores volumétricos 

Estos transductores generan imágenes tridimensionales en tiempo real mediante el uso de una tecnología avanzada con múltiples cristales piezoeléctricos. Se recurre a ellos para realizar una reconstrucción digital en 3D y 4D que permita visualizar volúmenes anatómicos.

Avantages

  • Images détaillées et volumétriques des structures anatomiques.
  • Permet d'évaluer la morphologie du fœtus avec une plus grande précision.
  • Permet de naviguer dans des études diagnostiques avancées.

Applications cliniques

  • Échographie obstétrique en 3D et 4DÉvaluation détaillée du fœtus et détection des malformations et des anomalies.
  • Echographie gynécologique avancéeDiagnostic précis des anomalies utérines et ovariennes.
  • Echocardiographie 4DÉtudes cardiaques permettant de visualiser le cœur en temps réel avec une grande précision.

Transducteurs ultrasonores spéciaux

Outre les transducteurs classiques, il existe des transducteurs conçus pour des applications spécifiques :

  • Transducteurs DopplerIls permettent d'évaluer le flux sanguin en temps réel.
  • Transducteurs laparoscopiquesProcédures chirurgicales mini-invasives : Ils sont utilisés dans les procédures chirurgicales mini-invasives.
  • Transducteurs en réseau ou MatriceCapturez simultanément plusieurs plans d'image pour des reconstructions plus précises.

Guide pour choisir le bon type de transducteur d'échographie

Il est essentiel de choisir le bon transducteur d'échographie pour obtenir des images de haute qualité et des diagnostics précis. Pour ce faire, plusieurs aspects doivent être pris en compte :

Fréquence

L'un des facteurs clés dans le choix du transducteur est la fréquence. mesure la relation entre la profondeur de pénétration et la résolution de l'image.. Cette étape est essentielle, car elle détermine leur capacité à pénétrer les tissus et à fournir une image claire.

Haute fréquence (supérieure à 7 MHz)

  • Il offre images plus détailléesmais avec une capacité de pénétration plus faible.
  • C'est la fréquence idéale pour structures de surface comme les muscles, les vaisseaux sanguins et la peau.
  • Il est utilisé dans transducteurs linéaires et endocavitaires.

Basse fréquence (inférieure à 5 MHz)

  • Permet une une pénétration accrue. Cependant, sa résolution est plus faible.
  • Il est utilisé pour évaluer organes profonds comme le foie, les reins et le cœur.
  • Il est situé à transducteurs convexes et sectoriels.

Si l'objectif est d'étudier les tissus proches de la surface, comme l'échographie musculaire, un transducteur à haute fréquence est recommandé. En revanche, pour explorer les organes internes ou les structures situées dans les zones profondes, il convient de choisir un transducteur à basse fréquence.

2. Application clinique spécifique

Avant de choisir un transducteur, il convient de procéder aux vérifications suivantes tenir compte de la spécialité médicale et du type de structures à examiner Quels types de transducteurs sont recommandés en fonction de l'application médicale ?

Échographie vasculaire et musculo-squelettique

Il est recommandé d'utiliser un transducteur linéaireL'imagerie à haute fréquence permet une visualisation détaillée des structures superficielles telles que les artères, les veines, les muscles et les tendons.

Examens abdominaux et obstétriques

Utiliser un transducteur convexe pour obtenir une plus grande pénétration. Sa basse fréquence permet une pénétration profonde pour évaluer les organes tels que le foie, les reins et l'utérus.

Évaluation cardiaque et pulmonaire

Sélectionner un transducteur sectoriel (réseau phasé). Il permet d'obtenir des images du cœur à travers des espaces confinés, tels que les côtes, et d'effectuer des études dynamiques en temps réel.

Gynécologie et urologie

Choisir un transducteur endocavitaire avec une haute résolution. Sa haute fréquence permet d'obtenir des images nettes des organes reproducteurs tels que l'utérus, les ovaires et la prostate.

Pédiatrie et néonatologie

A transducteur microconvexe offre le meilleur rapport résolution/taille. Sa taille réduite permet de scanner plus facilement les nourrissons et les nouveau-nés.

L'échographie aux urgences et aux soins intensifs

Elle nécessite une transducteur sectoriel ou microconvexe en raison de sa portabilité et de sa capacité de pénétration pour l'imagerie rapide des patients gravement malades.

Études avancées en 3D et 4D

Elle nécessite une transducteur volumétrique avec reconstruction tridimensionnelle.

3. Champ de vision nécessaire

La conception du transducteur influence la zone de couverture de l'image échographique. En fonction de la taille du champ de vision requis, les options suivantes doivent être envisagées :

  • Pour les petites structures et les structures détailléesLes transducteurs linéaires ou microconvexes constituent le meilleur choix, car ils permettent d'obtenir des images de haute résolution dans de petites zones telles que les vaisseaux sanguins, les muscles et les articulations.
  • Pour l'étude des organes profonds et des grandes structuresDans ce cas, les transducteurs convexes ou sectoriels sont recommandés, car ils permettent de visualiser de grandes zones avec une bonne pénétration. C'est pourquoi ils sont utilisés pour les études abdominales et cardiaques.

4. Mobilité et facilité d'utilisation

Dans certains contextes cliniques, la portabilité et la taille du transducteur sont d'autres facteurs essentiels pour un diagnostic plus efficace.

  • Études en salle d'opération ou en salle d'urgenceLes transducteurs sectoriels sont recommandés, car leur conception compacte et leur capacité de pénétration permettent de réaliser des échographies dans des espaces restreints.
  • Renseignements générauxLes transducteurs convexes et linéaires sont les plus utilisés en raison de leur facilité d'utilisation et de leur polyvalence.
  • Procédures guidées par ultrasons (ponctions, biopsies)Les transducteurs dotés de guides de ponction sont préférables pour améliorer la précision de l'insertion de l'aiguille.

 

Type de transducteur Fréquence (MHz) Profondeur de pénétration Résolution Principales applications
Linéaire 5 – 15 Baja Haut Vasculaire, musculaire, cutanée
Convexe 2 – 6 Les médias Les médias Abdomen, obstétrique
Secteur d'activité 2 – 4 Haut Les médias Cardiaque, pulmonaire
Endocavitaire 5 – 9 Baja Haut Gynécologique, prostate
Microconvexe 5 – 8 Les médias Les médias Pédiatrie, anesthésie
3D/4D Variable Variable Haut Obstétrique, cardiologie

 

Sur DiagXimagExperts dans la vente d'échographes et de matériel médical, vous trouverez une large gamme d'échographes et de transducteurs pour répondre aux différents besoins de votre clinique ou de votre centre médical.

Le choix du transducteur en échographie dépend de la région anatomique à évaluer et du niveau de détail requis. Des transducteurs linéaires pour les structures superficielles aux transducteurs sectoriels pour les études cardiaques, chaque type de sonde à ultrasons a une fonction spécifique pour optimiser le diagnostic par ultrasons dans diverses spécialités médicales.

Contacter DiagXimag

Bibliographie

Díaz-Rodríguez, N., Garrido-Chamorro, R. P., & Castellano-Alarcón, J. (2007). Méthodologie et techniques. L'échographie : principes physiques, échographes et langage de l'échographie. Medicina de Familia. SEMERGEN, 33(7), 362-369. Récupéré de https://www.elsevier.es/es-revista-medicina-familia-semergen-40-articulo-metodologia-tecnicas-ecografia-principios-fisicos-13109445

Borrego, R., & González Cortés, R. (2018).. Principes de base de l'échographie. Société espagnole de soins intensifs pédiatriques. Tiré de https://secip.com/images/uploads/2018/09/1-FUNDAMENTOS-BASICOS-DE-ECOGRAF%C3%8DA.pdf

Pardell Peña, X. (2024). L'échographie et l'échographe. Authorea. Récupéré de https://www.authorea.com/doi/full/10.22541/au.172660489.98960333

DiagXimag(n.d.). Spécialistes de l'échographie et du fluoroscope. Extrait de https://diagximag.com/

Luís Daniel Fernández Pérez

Administrateur de Diagximag. Distributeur d'équipements et de solutions d'imagerie médicale.

fr_FRFR